
Table Views User
Guide

8.1.3 Release



Copyright © 2023 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET Framework, Internet
Information Services, Windows Communication Foundation and SQL Server are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
DevExpress is a registered trademark of Developer Express, Inc. Cisco is a registered trademark
of Cisco Systems, Inc. Intel is a trademark of Intel Corporation. AMD64 is a trademark of
Advanced Micro Devices, Inc. Other names may be trademarks of their respective owners.



Table of Contents
Table Views Spreadsheet and Excel Add-In 1

Overview 2

Technical Features and Setup 3

Restrictions 3

Table View Sizing 4

Table Views Spreadsheet/Excel Ribbon Button 5

Table View Business Rules 7

Spreadsheet Function Types 8

Processing Order 8

Using Parameters 9

Can Modify Data 10

Table View Conditions 10

Table View Sources 11

Table View Business Rule Example 11

GetTableView Function Type 11

Incorporating Parameters 20

Using XFTV Named Ranges 20

Table Views User Guide i

Table of Contents



Security 24

Summary 27

Sample Table View Rules File 28

Table Views User Guide ii

Table of Contents



Table Views Spreadsheet and
Excel Add-In
The primary purpose of Table Views is to provide a method for accessing or updating relational
data. This data is presented in a dashboard or inside the Excel Add-In. The use of Table Views
enables the designer to work in a more flexible environment to design a form or data collection
tool.

Table Views are not alternatives to other tools, such as the SQL Table Editor or Grid Viewer,
Dashboard Components.

Key Use:

l Designed to collect records from relational tables, or other sources

l Present the information in the Spreadsheet format

l Utilize client-side functionality, found in the Spreadsheet tool, such as calculations and
pick-list validation lists

l Table View Business Rules can be designed to manage the column field records, such as
updates, inserts and deletes.

Design Considerations:

l The current functionality is designed to update records in target tables

l Controlling elements must be designed into the Table View Business Rule by the creator to
ensure data integrity, security and performance

Table View Size Considerations:

l Table Views depends upon the number of rows and row content

l Paging is not supported. Therefore, all rows and content must be returned

l Performance testing and design expectations is to support approximately 8000 KB of data
per Table View.

Table Views User Guide 1

Table Views Spreadsheet and Excel Add-In



Overview
A Table View definition for the Windows Application Spreadsheet Tool or Excel Add-In is defined
in a Business Rule.  The Administrator designing the rule can define the rows and columns which
should be returned to the worksheet from the source table presented in the Table View.

The Table View Business Rule can collect data frommultiple data sources. For example, a single
worksheet can display a Table View which collects data from two or more sources.

The Administrator has full control over the write back “save” process through Business Rules.
When designing the Table View Business Rule, the BRAPI Authorization functions should be
designed into the Business Rule to control access to the viewing or modifying the data. This can
be applied to the entire table or to specific cells. A workbook can contain multiple Table Views.
These can be on the same worksheet or across worksheet pages.

A single Business Rule file can be used to define multiple Table Views by calling the Business
Rule argument, TableViewName. Additionally, a single named range can be used to manage
table data cells within the Spreadsheet and Excel Add-In using user defined named ranges
(XFTV_*).

Table Views User Guide 2

Table Views Spreadsheet and Excel Add-In



Technical Features and Setup
This section will review the various functional elements of the Table Views feature. The design of
Table Views involves having a thorough understanding of the source and target tables to be
viewed or modified. The Administrator developing the Table View will also be required to
understand the requirements needed for the final Spreadsheet form to design the Business Rule
at its most granular level. This will allow the Business Rules to be designed to the most restrictive
level which will maximize security and gain the highest performance.

Restrictions
Table Views should never read or write to OneStream Application controlling tables, such as Data
Tables, Cube Tables or Log Tables. 

l AppProperty*

l Attachment*

l Audit*

l Data*

l CalcStatus*

l Certify*

l Confirm*

l Cube*

l Dashboard*

l DataAttachment*

l DataCellDetail*

l DataEntry*

l DataMgmt*

l DataRecord*

Table Views User Guide 3

Technical Features and Setup



l DataUnit*

l Dim*

l FileContents*

l FileInfo*

l Folder*

l Form*

l FxRate*

l ICMatchStatus*

l Journal*

l Member*

l Parser*

l Relationship*

l SecRoles*

l Stage*

l System*

l Taskflow*

l Time*

l Workflow*

Table View Sizing
The output interface to the Table View Business Rule is the OneStreamWindows Application
Spreadsheet and Excel Add-In.

Table Views should not be considered as a replacement for other Dashboard tools used with
database tables, such as the SQLTable Editoror theGrid View components which support very
large tables.

Table Views User Guide 4

Technical Features and Setup



The Spreadsheet tool and Excel Add-In does not have a paging function to manage very large
data sets. Therefore, careful testing is recommended to verify the size and performance of the
records being managed with Table Views.

A significant impact on the performance of Table Views is the cell content. Along with the
physical number of rows, the content contained in the cells can dramatically affect performance.
The cell content is the key factor on the impact of the ultimate size on disk.

Table Views Spreadsheet/Excel Ribbon Button
Table Views is a OneStreamWindows Application Spreadsheet and Excel Add-In feature used to
assign a Spreadsheet Business Rule to a worksheet.  All Table Views are derived through the
definition of a Business Rule, and only Administrators have the rights to create Business Rules. 

1. Open the OneStreamWindows Application and select Tools/Spreadsheet or Open your
Excel Add-In.

2. Select an available cell to begin the Table View range.

3. From theOneStream tool bar, choose the Table Views button.

Table Views User Guide 5

Technical Features and Setup



4. Choose the Add button.  Selecting ellipsis button from the Table View Business Rule field
allows browsing the available Business Rules.  The selection will automatically assign the
Name and Refers To cell intersection. Only Spreadsheet type Business Rules will render
as a Table View.

5. The Table View will render in the worksheet and is associated with a named range.

Table Views User Guide 6

Technical Features and Setup



6. Choosing the Refresh options will retrieve the most current results from the source table.

Table View Business Rules
Access to Table Views in Spreadsheet and Excel Add-In is limited to the Spreadsheet Business
Rule Type.The purpose of the Business Rule is to establish the source data records to be
displayed. The ability to save a record or field within a record is also completely defined within the
Business Rule. The Table View Business Rules also support Parameters to enable the resulting
Worksheet to be included in complex Dashboards.

Table Views User Guide 7

Technical Features and Setup



Spreadsheet Function Types
l GetCustomSubstVarsInUse Used to define the interaction with OneStream Dashboard
Parameters

l GetTableView Used to define the source(s) for the Table View. 

l SaveTableView This function defines the table or cell intersection that should be written to
a target database table

Processing Order
The Spreadsheet Function Types are designed to manage the processes within a common
Dashboard environment.

1. GetCustomSubstitutionVariables is executed first. 

a. If the defined Parameter is contained within the Dashboard, the selection will act as a
bound parameter and will be passed into the business rule.

b. If the defined Parameter is not contained within the Dashboard, it will run/prompt the
user.

Table Views User Guide 8

Technical Features and Setup



c. Additional conditional Parameters will be executed.  The Spreadsheet Business
Rules can conditionally execute additional Parameters, based on the results of
resolved Parameters.

2. Once all the Parameters are resolved, theGetTableView function will be processed.  This
section will generate the results in the Table View.  The Table View will also be evaluated to
determine if there will be any writable conditions.  If there a no writeable conditions, which is
the default, any refresh of the Spreadsheet/Table View will restart at the
GetCustomSubstitutionVariables function.

3. If the GetTableView is flagged as a writeable table, the SaveTableView process will be
executed, writing back only the elements specifically defined in the Business Rule.

Using Parameters
TheGetCustomSubstitutionVariables function is used incorporate Parameters into the Table
View.  Any parameters required are passed in as a list within the Function Type.  If the Parameter
is not included in the supporting Dashboard and resolved, for example as a Combo box, the
Parameter will be executed in the Table View to be resolved.

Additional Parameters can be included in the Table View to act as a nested, conditional
Parameter using the custSubtVarsAlreadyResolved function. This enables a resolved
Parameter to be evaluated to trigger additional Parameters to execute.  The
custSubstVarsAlreadyResolved can conditionally evaluate all resolved parameters to determine
subsequent parameters to be executed.

Table Views User Guide 9

Technical Features and Setup



Can Modify Data
All Table Views will default to “read only”.  The Table View condition for CanModifyDatamust be
set to True to allow write-back capability.  The CanModifyData object is set in theGetTableView
Function Type.  It is only required if any write-back is required based on the current Table View. 
The True condition will enable objects to be passed, and enabled, in to the SaveTableView
Function Type. When refreshing a Table View, the SaveTableView Function Type will not be
executed unless the CanModifyData property is set to True.

Table View Conditions
A single Spreadsheet Business Rule can contain multiple Table View definitions.  The Table View
Name can be called using the Args.TableViewNameto allow conditionally calling rule functions.

Table Views User Guide 10

Technical Features and Setup



Table View Sources
Table View Business Rules can collect a variety of data records as a source. Typically, a source is
defined as a table from a database. It is not limited to a single table but can collect records from
multiple tables. The Table View Business Rule designer can define the source essentially as any
data accessible to the Spreadsheet Business Rules. Similarly, the SaveTableView rules can be
defined to any target accessible by the Business Rules.

Table View Business Rule Example
This is an example only for the purpose of outlining the basic elements of a Table View Business
Rule.  By default, a Table View is “read only”.  A Spreadsheet Business Rule can be defined to
return a complete table. Always consider the size and content of the table as it may impact
performance. Elements that can impact performance, such as exceeding the ability to render the
Table View, are the total number of rows as well as the content within the records.

GetTableView Function Type

Database Connection
Create connections to sources, such as a database table using business rules.

Determine if the Table View Requires Write-Back
If the Table View must write-back to a target database or table, the CanModifyData property must
be set to True.

Table Views User Guide 11

Technical Features and Setup



Define the Table View Columns
Table columns can be returned for the entire table, or as distinct items. When columns are
defined, they can be returned to the Table View using an alias description as part of a Header
section.

Returning Rows to the Table View
Each row cell is evaluated from the data table columns.  The designer has full control over the
display of the content of the table using Business Rule functions.  In the example below, the
presentation of the results will vary by column, by user using the BRAPI Security Authorization
function.

Table Views User Guide 12

Technical Features and Setup



Security Filtering Results

Table Views User Guide 13

Technical Features and Setup



Add New Records
Add new records to a table by assigning a specific range of editable rows at the bottom of the
Table View, which can be used by rules to commit the records into a table.  Format the
background area with a fill color to visually indicate the area is enabled for adding new records.

Use the Insert Rows feature to insert empty rows into a table and change the background color.

l CanModifyData: Set to True to False to determine if the table can contain empty rows.

l NumberofEmptyRowsToAdd: Set the number of empty rows to add.

l EmptyRowsBackgroundColor: Set the color of the background.

The following example shows the business rule applied to the table.

Table Views User Guide 14

Technical Features and Setup



DataType Object for Column Fields
The DataType object allows the designer to define the Column Field as Text or Numeric. This
object references the current XFDataType object. However, not all XFDataType properties are
valid for Table Views. Only Int16, Int32, Int64, Float, Double, Decimal, and Textare valid.

If you do not specify a data type, it will default to Text.

In the example below, the Salary column is rendering the Table View Column fields as numeric
values to accurately reflect their nature and will support Spreadsheet based calculations.

Enable Status Column
The Table View Business Rule can create a dedicated status column. In the example below, it is
My Status column.  Use this to classify records for use in conditional business rule logic to drive
behaviors.

Table Views User Guide 15

Technical Features and Setup



In this example, the business rule can define members for a drop-down list defined as Delete,
Archive, and Inactive. The designer creates business rules to perform actions based on the status
of the records, such as delete, or archiving to another table.

Use the Enable Status Column option to manage records for your table.

l statusColumnEnabled: creates a status column in the table view when set to True.

l statusColumnName: string defines the name of the column. If left blank, the default name
“XFTV_Status” will be assigned. 

l statusColumnIndex: zero-based integer identifies the column where the status is created.
A value above the actual number of columns will assign the Status as the last Column.  A
negative number wil assign the Status column as the first column.   

l statusColumnValues: creates a list of members to select as a validation in the Status
column.  It is a hidden range at the top of the Table View.  If left blank, no list or validation
will automatically be created in the Status column, it will need to be created manually by the
designer.    

In the screenshot below, notice the Delete, Archive, Inactive, which is entered in the business
rule.

Table Views User Guide 16

Technical Features and Setup



Write Back
If theGetTableViewFunction Type is modified to set the Table View property CanModifyDataas
True, theSaveTableView Function will execute.  This section is used by the designer to define
which records should write back to the target.  The target table does not have to be the same as
the source table. 

Control conditions should be designed into the write-back rules for efficiency and performance. 
For example, Member Functions, such as IsDirty() can be incorporated to write only the modified
members within the writeable records.

Member Functions

l IsDirty– Condition Check if the item has been modified

l IsHeader– Member record status as a Header record.

l Name – Member label of the data table. Will not reference an alias label.

l OriginalValue– Condition reflects last stored value prior to the Table View refresh

Table Views User Guide 17

Technical Features and Setup



l Value– Reflects the current value present on the Spreadsheet Table View.  This can be a
changed, unsaved value.

Create Table View From Data Table
You can create a Table View from Data Table using the Table View
PopulateFromDataTablefunction. The new function has two additional Boolean properties to
include a Header Row and to utilize the Data Table's Data Type. The function is able to utilize any
Data Table, including those from Dashboard Data Adapters using the GetAdoDataSetForAdapter
function.

Properties:

Table Views User Guide 18

Technical Features and Setup



l tableView.PopulateFromDataTable(data Table , Include Header Row, Include Data Types)

Column Format Object
The ColumnFormat Object allows the Table View Designer to format the content area of a
column, while excluding the Column Header for use as a separately formattable column header
using the HeaderFormat object.

tableView.Columns(1).ColumnFormat.ColumnWidth = 15
l BackgroundColor

l ColumnWidth

l FontFamily

l FontSize

l IsBold

l IsItalic

l IsUnderlined

l TextColor

l NumDecimals

l AsPercentage

Header Format Object
The use of the HeaderFormat Object requires the PopulateFromDataTable to include a header or
a scripted data table to define a TableViewRow as IsHeader=True. This function allows a column
headers to be formatted as a row using all the formatting options except NumDecimals and
AsPercentage.

Table Views User Guide 19

Technical Features and Setup



tableView.HeaderFormat.BackgroundColor = XFColors.Navy
Incorporating Parameters

CAUTION: The OneStream Parameters to be bound, or used, in the Spreadsheet Table
View are defined in theGetCustomSubstVarsInUse Function Type.   The Parameters
can be resolved as a component within a Dashboard, or they can be an element of the
Table View. Once resolved, the Parameter is passed to theGetTableView Function
Type.

Using XFTV Named Ranges
The purpose of creating a Spreadsheet using the “XFTV” named range is to manage data cells
with read and write functionality to a Table View.  This eliminates much of the work related to
creating dashboards which may require multiple text boxes, labels, combo boxes, business rules
and other controls to manage data across a table. 

The XFTV Named Range can be used to link a field to a Table View.  For example, a list of
members may be used in a drop-down list.  The selected item would then be used to write back to
a required field in a Table View, which would ultimately write to a target data source.

A cell used as a Table View reference must be prefixed with XFTV_ to pass into a Table View. 
The structure of the named range is “Prefix_Table View Name_Column Name_Row Number”.
The row number position is a zero-based index.

Table Views User Guide 20

Technical Features and Setup



Example
Sheet1 is designed as an interface or form based on records sourced from a table.

The data cell items are organized on the primary sheet with each being set as a XFTV named
range referencing Sheet2, which is the core Table View.

Sheet 2 is a Spreadsheet as defined by a Table Rule Business Rule

The Table View is added to the sheet and corresponds to the XFTV range definition on Sheet 1.
The XFTV named ranges associate their value to the Table View for read or write processing
dependent upon the Table View rule construction.

Table Views User Guide 21

Technical Features and Setup



Modifying the Sheet1 “form” for an additional field simply requires adding a named range.

As an example, the “form” may require an additional field which may be found as a referenced
validation or from the source table view. For example, the “TermDate” field may be required.
Selecting the cell and adding the syntax for the XFTV named range, for the appropriate field, will
incorporate the results into the sheet.

The data will automatically refresh from the defined source. If defined as a write-back field,
changes to the cell can be written back to a target table using the “submit” function.

Table Views User Guide 22

Technical Features and Setup



Table Views User Guide 23

Technical Features and Setup



Security
Security is controlled by the Business Rule Developer in three ways. It is very important that the
business rule designer/author consider data security when creating table views. The session info
object within the rule can be used to restrict/grant data access for the current user. Second, the
writeback functionality will also be controlled within the business rule to the user population
allowed to perform the writeback, as well as the granular level elements which may be modified. 
Lastly, the Table View Business Rule itself should be secured for viewing or access outside of the
defined dashboard.

Data level, or Table level, security is incorporated within the Business Rule script.  Various BRAPI
functions can be conditionally included in the script to control the read and write functionality each
user will encounter when presented with the Table View.   Using Table View Name arguments in
the Business Rule, rather than relying on the default Business Rule Name, will also add an
additional level of security for related to the tables.

Business Rule level security should also be utilized to restrict access to those who can edit and
modify the underlying Table View Business Rule. This can be done by using Business Rule
Encryption, which requires specific a user security role. Business Rule Encryption applies
password protection to any Business Rule it is applied to.

Table Views User Guide 24

Security



Additionally, the Business Rules for Table Views are stored in the Spreadsheet category.  To
control access to user’s access to retrieving the Table Views in their Application Spreadsheet, the
Access Group on each rule should exclude any user who is not a designer.

The Table View function should be called using a condition for the Spreadsheet Table View
Name.  The will control all Table View functionality by a defined name, rather than through the
business rule alone.

Table Views User Guide 25

Security



Table Views User Guide 26

Security



Summary
The Table Views feature is intended to provide a flexible solution for Dashboard “form”
development when an update to a table is required.  This business rule-based solution can
manage records from a variety of sources, as well as control the target and granularity of the
write-back records.  This feature fully supports Dashboard based Parameters as well as additional
levels of Table View based parameters to build rich Spreadsheet based Dashboard interfaces. 

Table Views User Guide 27

Summary



Sample Table View Rules File
Namespace OneStream.BusinessRule.Spreadsheet.TableViewSample

Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object,

ByVal args As SpreadsheetArgs) As Object

                Try

                Select Case args.FunctionType

                    Case Is = SpreadsheetFunctionType.Unknown

                    Case Is = SpreadsheetFunctionType.GetCustomSubstVarsInUse

                        Return GetCustomSubstVarsInUse(si, args.CustSubstVarsAlreadyResolved)

                    Case Is = SpreadsheetFunctionType.GetTableView

                        'The same business rule can support multiple Table Views.

                        If args.TableViewName.Equals("MyTableViewName")

                            Return GetMyTableView(si, args.CustSubstVarsAlreadyResolved)

                        End If

                    Case Is = SpreadsheetFunctionType.SaveTableView

                        SaveMyTableView(si, args.TableView)

                End Select

                Return Nothing

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

            End Try

        End Function

Private Function GetCustomSubstVarsInUse(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved

As Dictionary(Of String, String)) As List(Of String)

            Try

                'You will be prompted for the value of these variables if they have not been resolved.

Table Views User Guide 28

Sample Table View Rules File



                Dim list As New List(Of String)

                list.Add("MyTableViewParameterName")

                Return list

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

            End Try                            

        End Function

Private Function GetMyTableView(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved

As Dictionary(Of String, String)) As TableView

            Try

                Dim sql As New Text.StringBuilder

                sql.AppendLine("Select * from MyTable")

                'You can use substitution variables that have been resolved within the query.

                If custSubstVarsAlreadyResolved.ContainsKey("MyTableViewParameterName")

sql.AppendLine("Where MyFilterColumn = '" & custSubstVarsAlreadyResolved("MyTableViewParameterName") & "'
")

                End If

                'Create and fill the data table

                Dim dt As DataTable = Nothing

                Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)

                    dt = BRApi.Database.ExecuteSql(dbConnApp, sql.ToString, False)

                    If Not dt Is Nothing Then dt.TableName = "NoData"

                End Using

                'Create the Table View object

                Dim tableView As New TableView()

                'This allows the Table View data to be updated. This is set to False by default.

                tableView.CanModifyData = True

                'Create Columns on Table View using the Data Table columns.

                'Adding a header row to the Table View is optional

                Dim tableViewRowHeader As New TableViewRow()

                For Each dataColumn As DataColumn In dt.Columns

Table Views User Guide 29

Sample Table View Rules File



                    'You can conditionally hide a column

                    'If Not Convert.ToString(dataColumn.ColumnName).Equals("MyColumnToHide")

                        Dim column As New TableViewColumn()    

                        column.Name = dataColumn.ColumnName

                        column.Value = dataColumn.ColumnName

                        column.IsHeader = True

                        tableView.Columns.Add(column)

                        tableViewRowHeader.Items.Add(column.Name, column)

                    'End If

                Next dataColumn

                tableView.Rows.Add(tableViewRowHeader)

                'Create Column Data Rows

                For Each dataRow As DataRow In dt.Rows

                    Dim tableViewRow As New TableViewRow()

                        For Each tableViewColumn As TableViewColumn In tableView.Columns

                            Dim column As New TableViewColumn()    

                            Dim columnValue As String = ""

                            column.Name = tableViewColumn.Name

                            columnValue = dataRow.Item(tableViewColumn.Name)

                        'You can show/hide/mask column conditionally (e.g. based on the user group)

                            If column.Name.Equals("MySensitiveData") Then

If Not BrApi.Security.Authorization.IsUserInAdminGroup(si) Then

                                    columnValue = "Not Available"

End If

                            End If

                            column.Value = columnValue

                            column.IsHeader = False

                            tableViewRow.Items.Add(tableViewColumn.Name, column)

                        Next TableViewColumn

                        tableView.Rows.Add(tableViewRow)

                Next dataRow

                Return tableView

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

            End Try                            

        End Function

Table Views User Guide 30

Sample Table View Rules File



Private Function SaveMyTableView(ByVal si As SessionInfo, ByVal tableView As TableView) As Boolean    

                'Add code to check if the user has permission to write data.

                If Not tableView Is Nothing

                    Dim sql As String = String.Empty

                    Dim tableViewMyPrimaryKey As New TableViewColumn()

                    Dim tableViewMyColumnToUpdate As New TableViewColumn()

                    Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)

                        For Each tableViewRow As TableViewRow In tableView.Rows

                            If tableViewRow.IsHeader = False

                            For Each tableViewColumn As TableViewColumn In tableView.Columns

                                    If tableViewColumn.Name = "MyPrimaryKey"

                    tableViewMyPrimaryKey = tableViewRow.Item(tableViewColumn.Name)

                                    End If

                            If tableViewColumn.Name = "MyColumnToUpdate"

                        tableViewMyColumnToUpdate = tableViewRow.Item(tableViewColumn.Name)

                                End If

                                Next tableViewColumn

                                'Update the column value only if the value was changed.

                                If tableViewMyColumnToUpdate.IsDirty()

                            'Create audit records as needed before and after updating data.

sql = "Update MyTable Set MyColumnToUpdate = '" & tableViewMyColumnToUpdate.Value & "' Where

MyPrimaryKey = " & tableViewMyPrimaryKey.Value & " "

                                        BRApi.Database.ExecuteSql(dbConnApp, sql, False)

                                    End If

                            End If

                        Next tableViewRow

                    End Using

                End If

            Return True

        End Function

    End Class

End Namespace

Table Views User Guide 31

Sample Table View Rules File


	Table Views Spreadsheet and Excel Add-In
	Overview

	Technical Features and Setup
	Restrictions
	Table View Sizing
	Table Views Spreadsheet/Excel Ribbon Button
	Table View Business Rules
	Spreadsheet Function Types
	Processing Order
	Using Parameters
	Can Modify Data
	Table View Conditions

	Table View Sources
	Table View Business Rule Example
	GetTableView Function Type

	Incorporating Parameters
	Using XFTV Named Ranges

	Security
	Summary
	Sample Table View Rules File

